

School:	School of Health and Life Sciences	
Course Title:	PHYSIOLOGICAL BASES OF HUMAN MOVEMENT I	
Course ID:	EXSCI1005	
Credit Points:	10.00	
Prerequisite(s):	Nil	
Co-requisite(s):	Nil	
Exclusion(s):	Nil	
ASCED Code:	10913	

Description of the Course :

This course is designed to introduce students to the basics of how the body functions from the cells to key physiological systems such as the muscular, nervous, cardio-vascular, respiratory, hormonal, digestive, immune systems. It is envisaged this course will provide the fundamental physiology knowledge that is required in exercise testing and prescription.

Grade Scheme: Graded (HD, D, C, etc.)

Program Level:

AQF Level of Program						
	5	6	7	8	9	10
Level						
Introductory			~			
Intermediate						
Advanced						

Learning Outcomes:

Knowledge:

- **K1.** Demonstrate knowledge of basic cell function and biochemistry related to the human body.
- **K2.** Describe the biochemical pathways by which fat, carbohydrate and protein substrates are catabolised to produce ATP.
- **K3.** Describe the mechanism of muscle contraction and the role of ATP and Calcium, and factors that determine the force and velocity of contraction (e.g. motor recruitment, muscle length, contribution of passive elements, muscle fibre type, muscle architecture, rate of neural activation).
- **K4.** Describe the characteristics of smooth, cardiac and skeletal muscle.
- **K5.** Describe how graded and action potentials are generated in nerves and the role of neurotransmitters in conducting electricity in our body.
- **K6.** Explain the roles of parasympathetic and sympathetic nervous system, somatic motor control, reflex arcs and how sensory perception results in motor actions.

EXSCI1005 PHYSIOLOGICAL BASES OF HUMAN MOVEMENT I

- **K7.** Understand how heart rate, stroke volume and blood pressure are intrinsically and extrinsically regulated.
- K8. Explain an ECG trace and how exercise and common pathologies affects it.
- **K9.** Explain how the vascular system regulates blood pressure and flow throughout the body.
- **K10.** Describe the effects of commonly prescribed medication that may influence the heart rate, blood pressure and electrocardiographic responses to exercise.
- **K11.** Understand the mechanisms underlying abnormal electrocardiographic responses to exercise of varying duration and intensity.
- **K12.** Discuss the importance of erythrocytes, leukocytes and platelets to the body and factors affecting their activity.
- **K13.** Identify factors regulating ventilation gaseous exchange and distribution of oxygen supply to and removal of CO2 from to the tissues.
- **K14.** Describe how the kidneys regulate the filtration rate, reabsorb nutrients and secrete waste and regulate blood volume and pressure.
- **K15.** Explain the stimulus and effect of the major hormones.
- **K16.** Explain how the specific and nonspecific immune systems mount attacks against pathogens.

Skills:

- **S1.** Practise the correct and accurate conduct and interpretation of spirometery.
- **S2.** Illustrate proficiency in the use of isokinetic dynamometry.
- **S3.** Demonstrate an ability to measure heart rate, blood pressure and rating of perceived exertion before, during and after submaximal fitness tests.
- **S4.** Become proficient in blood grouping.

Application of knowledge and skills:

A1. The knowledge and understanding of physiology will be applied in drawing diagrams of key physiological functions and answering questions in the tests that may be in clinical or sporting context.

Course Content:

Week	Lecture content	Practical/tutorial content	NUCAP criteria covered
1	Homeostasis Content: negative and positive feedback systems Biochemistry Content: inorganic and organic molecules	Chemistry & sport application Atoms & Bonds, solutions, concept of mol. Prepare composition of beverage maximising hydration after exercise.	2.21
2	Biochemistry Content: Cellular integration - factors affecting cell movement in and out of cells, role of cell organelles	Chemistry & sport application Atoms & Bonds, solutions, concept of mol. Prepare composition of beverage maximising hydration after exercise.	2.21

EXSCI1005 PHYSIOLOGICAL BASES OF HUMAN MOVEMENT I

3 **Cell function**

Content: mitosis, meiosis, apoptosis, cell death **Protein synthesis**

Content: DNA and RNA, translation and transcription

4 Metabolism

Content: role of creatine phosphate, carbohydrate, fat and protein in producing ATP, glycolysis, Krebs cycle and the electron transport chain

5 Nerve physiology

Content: Graded potentials, action potentials, neurotransmittors and receptors; propagation of action potential; synapses; motor recruitment, pathways, reflexes. parasympathetic and sympathetic

Warning Uncontrolled when printed! The cur

nervous system, somatic motor control, reflex arcs and sensory perception

6 Muscle physiology Content: skeletal muscle contraction:

factors affecting force, velocity and duration of muscle contraction

Neural Integration 7

Content: Graded potentials, action potentials, neurotransmittors and receptors; propagation of action potential; synapses; motor recruitment, during exercise. Medication parasympathetic and sympathetic nervous system, somatic motor control, vascular response. reflex arcs and sensory perception Digestive physiology - factors affecting absorption and transport of carbohydrate, proteins and fat

8 Cardiac physiology

Content: physiology of auto-rhythmic & Assess sub-maximal VO2, cardiac cells, intrinsic and extrinsic regulation of cardiac output, cardiac cycle, electrocardiogram TEST

9 Vascular physiology

Content: factors regulating blood flow, pressure and blood distribution to tissues Blood physiology

Metabolism

Metabolic pathways which fat, carbohydrate and protein build ATP.

Metabolism

Metabolic pathways which fat, carbohydrate and protein build ATP.

Muscle/nerve physiology

Length tension, force velocity relationships, neural adaptation, divergent, convergent neural

rent version of this document the UB website. is kept on

2.6

1.54, 9.1, 9.2

2.4, 2.5, 9.7,

2.3, 5.7, 5.18,

9.3, 9.4, 5.15

2.3, 5.7, 5.8,

5.15

2.28

1.54

Muscle/nerve physiology

Length tension, force velocity relationships, neural adaptation. divergent, convergent neural pathways, reflexes.

ECG/blood pressure

Assess sub-maximal VO2, electrical heart activity from ECG and blood pressure at rest and considerations on the cardio-

ECG/blood pressure

electrical heart activity from ECG and blood pressure at rest and during exercise. Medication considerations on the cardiovascular response.

Respiratory Physiology

Assess forced vital capacity forced expiratory volume in 1 second and peak flow from spirometry.

EXSCI1005 PHYSIOLOGICAL BASES OF HUMAN MOVEMENT I

10	Respiratory physiology Content: Pulmonary ventilation, factors affecting gas exchange in lungs and tissues, gas transport, regulation of ventilation	Respiratory Physiology Assess forced vital capacity forced expiratory volume in 1 second and peak flow from spirometry.	2.28
11	Renal physiology Content: Regulation of glomerular filtration rate, reabsorption, secretion , formation of concentrated or dilute urine Fluid & pH regulation	Blood grouping Assess individual blood type.	
12	Endocrine physiology Content: functions, controls and effects of hormones Immune physiology Content: specific and non-specific defences to pathogens	Blood grouping Assess individual blood type.	

Values and Graduate Attributes:

Values:

V1. Develop an appreciation of an evidence based approach to the physiological bases of human movement

Graduate Attributes:

Attribute	Brief Description	Focus
Continuous Learning	Students will be encouraged to develop knowledge of how the body functions. This knowledge will serve as the platform students develop and optimise intervention strategies to maximise human performance.	High
Self Reliance	Students will be encouraged to develop their own knowledge, independent critical analysis by reading relevant journal- articles and the prescribed text . Students will be also given practical scenarios in exams that require reflection to form their answer from an evidence based perspective.	Medium
Engaged Citizenship	In tutorials, students will learn often goals need to be achieved by working with solidarity which will foster development of community oriented individuals.	Low
Social Responsibility	In tutorial students will be encouraged to work collegially in small groups to achieve tasks fostering team-work, patience, support, respect and empathy.	Low

Learning Task and Assessment:

EXSCI1005 PHYSIOLOGICAL BASES OF HUMAN MOVEMENT I

Learning Outcomes Assessed	Learning Tasks	asks Assessment Type	
A1, K1-K5	Review of theoretical and laboratory content.	Test 1	40-60%
A1, K6-K16	Review of theoretical and laboratory	Test 2	40 - 60%
S1 S4	Practical skill competency (Spirometry, ECG, blood pressure)	Demonstration of Practical Skill	S/U
	Participation in tutorial activities	90% tutorial attendance	S/U

Adopted Reference Style:

APA